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SUMMARY 

This study extends the reduced Navier-Stokes (RNS) global pressure relaxation procedure developed by 
Rubin and co-workers for external flow to internal flow applications. The streamwise pressure gradient is 
split into a backward-differenced or initial value component, as in boundary layer marching, and a forward- 
differenced or boundary value component that represents the elliptic downstream effects. The streamwise 
convection terms are upwind-differenced and all other streamwise derivatives are backward-differenced. We 
thus obtain a standard boundary layer marching technique imbedded in a conventional line relaxation 
technique. For compressible flow the pressure iteration determines the interior flow interation as well as the 
inlet mass flux that is consistent with the outflow pressure boundary condition. Results have been computed 
for incompressible flow in both rectangular and curved channels, and for subsonic compressible flow in the 
simulation of an aerofoil in a wind tunnel. Converged solutions were obtained over a range of Reynolds 
numbers generating small to moderately large separation bubbles. 

KEY WORDS Reduced Navier-Stokes Strong interaction Global pressure relaxation Two-dimensional 
Laminar Internal flow 

INTRODUCTION 

The difficulties inherent in obtaining large-Reynolds-number (Re) Navier-Stokes (NS) solutions 
for strong interaction flow problems have led to the development of approximate forms of these 
equations. These are applicable to particular flow regimes and are more computationally efficient. 
The earliest of these approximations include inviscid potential and Euler theories and Prandtl 
viscous boundary layer theory.’ Classical matched inviscid-outer/viscous-inner (boundary layer) 
solution procedures were in turn extended with higher-order boundary layer (HOBL) theory,’ 
interacting boundary layer (IBL) theory3 and triple-deck theory4 

The most advantageous feature of the boundary layer model is that the resulting system of 
equations is initial value in character (mathematically parabolic) and can be solved numerically 
by simple marching procedures. This concept of ‘boundary layer’ marching technique was 
extended to more complete systems of equations with the parabolized Navier-Stokes (PNS) 
formulation. For this approximation all terms of both the Euler and Second-order boundary 
layer equations were retained within a single equation set and solved as an initial value problem. 
However, as is now known, the inclusion of the coupled streamwise pressure gradient p x  leads to 
an ill-posed initial value problem, and exponentially growing ‘departure’ solutions result. The 
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variable streamwise pressure gradient in PNS or interacting boundary layer theory introduces an 
elliptic upstream interaction between the boundary layer and inviscid flow. 

In order to suppress the ellipticity and permit parabolic marching for weakly intereacting 
flows, different treatments were applied for the p, term. It was neglected for hypersonic flow5 and 
calculated only in supersonic regions for large-Mach-number supersonic viscous flow,6 i.e. 
sublayer approximation. These procedures are not useful for accurate subsonic flow computation 
where upstream influences will be significant. From characteristic analysis7 it was shown that the 
streamwise pressure gradient should be split into an initial value part ‘op,’ and a boundary value 
part ‘(1 - w)px’, where for constant stagnation enthalpy, o is defined by the condition 

Only the ‘cop,’ term is retained for the initial value PNS calculations. More recently, Rubin’ has 
shown that the flux pressure decomposition can be obtained directly with a new form of flux 
vector splitting that correlates contributions from positive and negative flux eigenvalues. 

The original initial value PNS model, although providing a simpler solution technique for 
boundary-layer-like flows, was not satisfactory since the elliptic viscous-inviscid interaction 
effects were simply suppressed rather than calculated. The restoration of the complete streamwise 
pressure gradient as an unknown leads to what is termed reduced Navier-Stokes (RNS) theory. 
This permits simulation of elliptic effects due to viscous-inviscid interaction, as well as the elliptic 
acoustic pressure propagation of inviscid subsonic flow. In order to formulate a numerical 
method that could preserve the entire streamwise pressure gradient, the differencing of the p ,  term 
was further explored in Reference 9. In this study (for incompressible flow where o 40)  it was 
shown that stable marching could be achieved with ‘forward’ differencing for p ,  given by 

P i t l , j - P i , j  p =-  
Axi 

where i is the grid index in the streamwise (x) co-ordinate a n d j  is the index in the normal (y) co- 
ordinate. Convective streamwise derivatives were upwind-differenced. All flow variables were 
coupled at the streamwise location i and the solution was marched from an initial station 
downstream. The downstream pressure value p i + l , j  was relaxed from some initial guess or 
inviscid solution. Upon completion of the one sweep, the new values of pi+ were used for the 
next sweep. This method provided for a multisweep pressure relaxation process similar to the IBL 
method. Unlike the IBL method, however, this interation is simulated with a single set of 
equations valid throughout the entire flow field. 

Applications of the forward-differencing procedure were presented in References 10-14. The 
compressible flux-split analysis with backward differencing for the component o p ,  and forward- 
differencing for (1 - w)p, was verified by numerical solutions in References 15 and 16. The RNS 
system contains all terms of the Euler, second-order boundary layer, IBL and triple-deck theories 
in a single set of equations. The RNS model, like the IBL and triple-deck equations, provides an 
approximation of the full NS equations which is capable of calculating strong viscous-inviscid 
interactions. This system also allows for the evaluation of upstream influence due to inviscid 
acoustic pressure propagation. The free pressure interaction permits a sigularity-free calculation 
through regions of separated flow. 

In the present study the RNS global pressure relaxation procedure, which has been utilized in 
the past primarily for external flow, is extended to internal flow applications. Problems are 
considered for both incompressible and subsonic compressible flow. Incompressible flow cases 
include unseparated flow in rectangular channels and moderate-to-large separated flow in curved 
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channels, for which comparison solutions are available in the literature. For compressible flow, 
solutions are obtained for flow past a NACA0012 aerofoil in a variable diameter wind tunnel and 
over a range of Mach number and Reynolds number. The Reynolds number range considered for 
the compressible flow cases includes flows with significant regions of recirculation. 

GOVERNING EQUATIONS 

The RNS equations are obtained by retaining all terms in the NS equations which appear, to 
second order, in both the inner expansion (boundary layer) and outer expansion (inviscid region) 
of HOBL theory. These equations are expressed in an appropriate 'streamline' or body-fitted co- 
ordinate system. The resulting RNS equations for orthogonal curvilinear co-ordinates in non- 
dimensional form are: 

continuity 

equation of state 

p = g,-I[ YIEI p ( ,  - r ( u 2  E 2 + 02)  ) - ( 1 - 3 ] ,  

where 

U 2  A P r U r L ,  

( R e )  ' P r  Hr 
E, 2 (reference Eckert number). R e =  -, 1 

EG- 
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The subscript 'r' denotes reference value, h,, h,, h, are metric scale factors, u and u are the 
contravariant physical velocity components in the streamwise ( 5 )  and normal (q) co-ordinate 
directions, p is density, p is pressure, yr is the reference specific heat ratio, and the stagnation (or 
total) enthalpy H is defined (in non-dimensionai form) as 

H = 1 - 2  T + - ( u 2  + 0'). ( :) : 
The reference Eckert number E, is related to a reference Mach number M ,  by the relation 

We note that the RNS equations do not contain viscous streamwise diffusion terms in the 
streamwise momentum equation or any viscous diffusion terms in the normal momentum 
equation. The normal direction pressure gradient term h,h3p,  as well as the longitudianl 
curvature term - pu2hl lh ,  are completely retained. Furthermore, all terms in the inviscid Euler 
equations, i.e. all convection terms and pressure gradients, including the streamwise pressure 
gradient p r  are retained. 

For compressible flow the pressure p is expressed at each streamwise marching location T i  in 
terms of p, u, u and H with the equation of state (5). For incompressible flow p 4 1 in equations 
(1x4). For the present analysis p, cp and Pr (dynamic viscosity coefficient, specific heat at 
constant pressure, and Prandtl number) are all treated as constants. We note that for Pr = I ,  
steady flow, an inlet boundary condition H = H * / H r  = 1 (where ( )* denotes a dimensional 
quantity) and an adiabatic wall boundary condition dH/dq l w a , ,  = 0, the assumed solution 

H(5,  q )  4 1 (8) 
satisfies equation (4) to within an error associated with second-order curvature terms. For the 
present analysis, in order to expedite numerical solution, equation (8) is used for H .  The full 
equation (4) is,. however, included in the program and was tested for unseparated flows. The 
results show little change from the constant H solutions. 

Review and treatment of interaction terms in the R N S  equations 

The essential terms in the RNS system that capture the upstream influence and strong 
viscous-inviscid interaction are the streamwise pressure gradient term h, h 3 p r ,  the streamwise u- 
convection term ( p u ~ h , h 3 ) 5  and the normal pressure gradient term h ,  h ,p , .  The coupled solution 
of the full RNS equations, including these terms, is the feature that enables the simulation of the 
elliptic interaction. 

it . has been shown that the upstream influence is properly 
represented if the pressure gradient p s  is represented by a form of flux vector splitting given by 

(9) 
where o,i5 is backward-differenced and (1 - w,)p, is forward-differenced. The latter term 
becomes part of a multisweep global line relaxation method. The differenced form of (9) is given as 

From previous analyses738% 

Pr = % P g  + (1 - W,)P@ 

(where i is the grid index in the streamwise (5)  co-ordinate and j is the index in the normal ( q )  co- 
ordinate) or, alternatively, an averaged form spread over three points in the q-direction. This was 
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used in the compressible flow version of the code. The switch function w, (for H-constant)’ 
becomes 

w, = cr,min { , l }  
1 + (Yr - 1)M: 

and 

6, = constant (0 I crv i l), 

U 
M, 4 Mr- 

JT’ 
where M, is the streamwise component of the local Mach number and T is temperature. The 
constant factor cr, is an experimentally determined ‘damping factor’ which is taken to be less than 
or equal to one; (T, is taken as 1.0 for most applications. 

For internal flow a second stability or stiffness effect was encountered. This was not previously 
found for external flow RNS calculations. For each marching sweep a non-physical spatial 
oscillation associated with the streamwise pressure gradient p ,  was encountered. The source of 
this behaviour was traced to the presence of the (pu~h2h3) t  interaction term in the normal 
momentum equation and appeared to be directly associated with the additional mass conserva- 
tion constraint. This adds considerable stiffness to the system and requires some additional 
damping during the transient stages of the computation. The influence of this term was 
suppressed in the transient by overrelaxing the p,, term. This is equivalent to adding a fictitious pst 
term. It was found that the oscilliations were suppressed for an overrelaxation factor o 2 10. 
Global convergence was then assured. 

For compressible flow the presence of the backward-differenced or initial value portion of pt; 
requires an inflow boundary condition on p .  For subsonic flow the downstream ‘back’ pressure 
should completely determine the inlet mass flow. Therefore the inlet pressure boundary condition 
is computed by a derivative pressure condition. For simplicity, a second derivative condition was 
selected. This allows the inlet pressure and hence the inlet mass flow to be determined as part of 
the solution. 

INCOMPRESSIBLE FLOW FORMULATION AND BOUNDARY CONDITIONS 

For incompressible flow the RNS equations are solved for semi-infinite rectangular channels and 
doubly infinite channels. These are formed by two streamlines of the potential flow past a 
cylinder. The solution region is always rectangular in the curvilinear computational plane, so that 
5 < q I q,. For incompressible flow, M ,  -+ 0 so that w, -+ 0 in (9) or (10). The 

pressure gradient p, is fully elliptic and therefore an inflow boundary condition for pressure is not 
required. 

As the channel walls become straight and parallel downstream, the co-ordinate transformation 
asymptotes to 5 = x, q = y ,  h,  = h, = h3 = 1.0. The downstream boundary is prescribed far 
downstream in the straight wall region so that fully developed flow conditions are achieved. 
Reference 20 delineates three regions of incompressible flow development in rectangular channels. 
The first is a small leading edge region of order x = O ( R e - ’ )  within which the complete 
Navier-Stokes equations are required to model the flow. The latter two regions, in which the 
RNS model is applicable, are measured relative to the development length co-ordinate i given by 

<,, q1 = 0 
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with x and Re based on the half-channel height h*/2. The first of these is an entry flow region of 
length 5 = O(1) wherein the flow structure consists of a potential core and boundary layers along 
the walls. Beyond [ = 0.2 the boundary layers increase to the point where they fill a significant 
fraction of the duct. Eventually the boundary layers merge for i = O(1) to form a fully viscous 
region. In the fully viscous region, p y  = 0 to second order and no further viscous-inviscid 
interaction occurs. Finally, for i = i,,, B 1, fully developed conditions are achieved. The length 
i,,, is termed the channel 'entrance length'. 

In the fully developed (Poiseuille) flow region we have 

= constant. (13) 
dP u = u(y), u 0, p = p(x), - 
dx 

Applying equations (13) to governing equations (1)-{3) (for 5 = x, y~ = y ,  h,  = h, = h, = 1.0) and 
utilizing no-slip boundary conditions we obtain the classical parabolic Poiseuille profile for which 
the pressure gradient p e  4 pfd,< is purely a function of Re and mass flow rate m. 

To accomodate the non-vanishing nature of the downstream pressure gradient and the 
developing flow character of the incompressible internal flow problem, it is convenient to assume 
the following pressure decomposition for the incompressible code development: 

where for convenience p o ( 5 )  is identified with the value of pressure on the upper wall, P,,((); this 
portion is further split2' into a fully developed flow component pi,,(<) and a perturbation puw(5). 
Since only gradients of p occur in the equations, the value p f d , <  can be added a priori in 
equation (3). The remaining dp,,/dt and dp'/dt derivatives involve differences of perturbation 
pressures that tend to zero as i + i,,,. Setting p' = 0 for 0 4 q I q,  at the exit boundary is 
somewhat constraining and therefore p i  = 0 is used as a less restrictive exit boundary condition. 

The variable p' is coupled to the normal momentum equation and contains the elliptic acoustic 
interaction. The value of p' is zero on the top wall and the component pUw,<, is determined at each 
marching location 5, by a Newton method iteration to enforce the boundary condition u = 0 on 
the top wall. Alternatively, use of a general matrix inversion algorithm (see compressible flow 
discussion in numerical scheme section) obviates the need for the p,, /p'  pressure splitting. The 
downstream pressure boundary condition then becomes 

& + 0 as 5 + 4(1,",> 

d ( i ' 3  'I) 42 P ( 5 ,  Y) - Pfd(t) .  

where 

This is more restrictive since the exit boundary must now be located in the fully developed region 
and not merely in the fully viscous region. 

COMPRESSIBLE FLOW BOUNDARY CONDITIONS AND REFERENCE 
CONDITIONS 

For compressible flow it is no longer numerically convenient to split the pressure, equation (14), 
since pressure is now related to density and velocity through the equation of state (5). Further- 
more, for subsonic flow the downstream static pressure and upstream stagnation conditions 
completely determine the mass flow through the duct. Thus the pressure, rather than the pressure 
gradient as applied for fully developed incompressible flow, is prescribed downstream. Once 
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again, 5, is chosen far enough downstream of any disturbance or curved wall region so that the 
exit station lies in the fully viscous region and the back pressure may be taken as constant. 

For numerical convenience we use design, rather than analysis, boundary conditions. In the 
design boundary condition prescription we assume that the downstream back pressure has 
already been adjusted to produce the desired inlet Mach number. The inlet Mach number then 
replaces the stagnation pressure as one of our upstream boundary conditions. The upstream 
stagnation enthalpy H* is for perfect gas flow H* = H* (T:) (where Tg is total temperature) and 
is specified. The downstream static pressure is non-dimensionalized with respect to back pressure, 
so that 

(16) 
a p ,  = pEagck = p*(&,,, q)  = p: = constant, 

The reference Mach number M ,  is taken to be the inlet Mach number at the centreline of the 
symmetric duct (q  = 0), where 2) = 0. 

As discussed previously, the inlet pressure boundary condition is obtained by equating the 
upstream and downstream pressure fluxes to give the gradient condition 

where n denotes the index of the current global iteration (march). Equation (18) is tantamount to 
extrapolating the inlet value pl,  from downstream values and is equivalent to the ptr = 0 inlet 
boundary condition used in Reference 22. Equation (18) provides the inlet static pressure. 

The non-dimensional incompressible and compressible flow boundary conditions are sum- 
marized as follows: 

inflow boundary 

5 = 51: 24 = UI(V), 
u = u l ( q )  (when u l ( q )  is known), 
or else 

H = 1 (compressible flow), 
prt = 0 (compressible flow); 

vr = 0, 

centreline boundary 
q = o  u,=O, 

H, = 0 (compressible flow), 
21 = 0, 

4 - v )  = + u(q), H( - q) = + H(q),  u( - q)  = - u(q); 

wall boundary 
q = n , o r q = O  u = O ,  

H ,  = 0 (adiabatic wall), 
u = 0; 

outflow boundary 
5 = 5,: p; = 0 (incompressible flow), 

p = 0 (compressible flow). 
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Symmetry boundary conditions are used in evaluating the (-momentum and energy equations on 
the wind tunnel centreline. 

The uy = 0 inlet boundary condition is preferable when the inlet station ( = t1 lies in the entry 
flow region. The inlet flow then consists of a uniform potential core and boundary layers along 
the walls. The uy = 0 inlet boundary condition enforces irrotationality in the inviscid core and 
continuity of the displacement thickness slope at the inlet. This boundary condition is also useful 
when the inlet station is in a first-order boundary layer region upstream of the RNS interaction 
zone. v r ( t l ,  4)  = 0 enforces the required p,, = 0 and allows the interaction region, signified by 
non-zero u y ,  to develop gradually. 

The inlet mass flux iteration is performed iteratively by repeated calculations of the equations 
at station t2 to a desired tolerance. This requires about three to four local iterations in the early 
global iterations; a single iteration is necessary as the global process approaches convergence. 
This iteration process adjusts the mass flux through re-evaluation of the inlet (station 1) density 
consistent with the inlet pressure given by equation (18). 

NUMERICAL SCHEME 

The equations are differenced using first-order upwind differences in the (-direction and central 
differences in the q-direction. Allowance is made for unequal spacing in both curvilinear co- 
ordinates, t and q. The difference molecule is shown in Figure 1. The continuity and ?-momentum 
equations are first-order in q and are evaluated using two-point trapezoidal-rule differencing at 
the half-point (i, j - f) and the (-momentum and energy equations are evaluated at the nodes 
(i, j ) .  All <-derivatives, other than (-convection terms, are backward-differenced. All t-convection 
terms are quasi-linearized and upwind-differenced. The energy equation for compressible flow is 
uncoupled from continuity and (- and v-momentum and solved in uncoupled in an outer 
iteration at each marching station t i .  

The upwind (-convection derivatives are differenced as follows (actually averaged over points 
(i, j - 1) + (i, j + 1) for compressible flow): 

with bj = 1 for u:,;’ > 0 and P j  = 0 for u:,;’ < 0 (where k is the index of the local quasi- 
linearization iteration at station t i  in global sweep n). In the vicinity of the change from reverse 
flow to forward flow, if the downstream value ti:;:, > 0 while uf,: is still less than zero, then a 
modified form of the forward-differencing procedure is used. In this modified scheme, inter- 
polation is used to determine the position where = 0. This length is then used for A ( i + l ,  
with u;;:, set to zero. An analogous procedure is used if ul- 1 ,  < 0 and u!, has become greater 
than zero. Values of u Y ~ : , ~  and u:;;,~ from the previous sweep (time level IZ - 1) are stored in 
separation regions. 

The finite difference equations at  each marching station ti for continuity, (-momentum and q- 
momentum have a block tridiagonal structure. For incompressible flow these equations are 
solved simultaneously for the dependent variables u : , ~ ,  u z j  and pi,kj, j = 1, . . . , j,,,, by a scalar 
form of the Thomas algorithm. The computer variable is the discrete counterpart of the 
perturbation pressure p ’ ( < ,  q)  defined in equation (15). The streamwise pressure gradient term 
becomes 
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* . J  

where 

~ ~~~~~ 

F I N I T E  DIFFERENCE MOLECULE 
Figure 1. Illustration of differencing scheme 

and K is computed and stored before the global relaxation process is started. For each local 
(quasi-linearization) iteration the value puw, in the (-momentum equation source term is 
adjusted by a Newton method iteration until the u = 0 upper wall boundary condition is satisfied, 

For the compressible code the differencing was the same as that for the incompressible code, 
except that the ‘node point’ equations (5-momentum, energy-see Figure 1) were written by 
averaging derivatives and other quantities about the half-points above and below each node 
point.23 

For the compressible code a matrix Thomas algorithm (LU decomposition) is applied. The 
matrix of equations at the marching station ti retains its block tridiagonal structure for 
compressible flow, but the matrix row positions of the q-momentum and continuity equations at 
the half-point below the top wall must be reversed to avoid a zero pivot element on the 
d i a g ~ n a l . ~ ~ . ’ ~  With the matrix Thomas algorithm, iteration on puw,ci/uuwi is no longer required. 
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The trapezoidal-rule differencing exactly provides the correct number of equations so that all 
boundary conditions on velocity can be satisfied without introducing the wall pressure (see 
Reference 25, Appendix C). 

STABILITY AND CONVERGENCE 

During the development of the RNS global pressure relaxation procedure for internal flow, a 
number of stability and convergence problems were encountered. The first of these, mentioned 
previously, was a spatial oscillation of the streamwise pressure gradient p,: that appeared in each 
marching sweep. This was relieved by overrelaxation of the p,, term in the q-momentum equation. 

The second source of instability was the occurrence of spikes in the global pressure residual 
field Apj, ( A P ~ , ~  for incompressible flow) near discontinuous changes in the streamwise grid 
stretch factor u5. This was rectified by providing smooth transitions between G~ changes via a 
finite series, hyperbolic tangent formulation (see Reference 25, Appendix D). 

A third problem was the destabilizing influence of the secondary, explicit u:::, relaxation 
(resulting from upwind differencing) upon the primary p:;:, iteration for large-Reynolds-number 
separated flows. As long as the u:::, iteration does not significantly affect the p::;, iteration (as 
in low-Re flow where the viscosity is great enough to damp out this effect, or for small bubbles 
which do not entail many points of explicit u;;;, relaxation), the pressure field convergence is not 
significantly degraded. However, when Re is large and the recirculation substantial, the global 
pressure relaxation procedure fails. This problem is alleviated by limiting the transients, either by 
proceeding from a smaller bubble to a larger one through stepwise variation of Re or stepwise 
increases in the severity of the geometry during the iteration process, or by applying an 
overrelaxation factor to the viscous terms. 

For the aerofoil-in-channel configuration studied in the compressible flow cases, the stream- 
line/potential line grid was generated by the Schwarz-Christoffel mapping technique of Davisz6 
and Sridhar and Davis” using straight line elements (panels). Inaccuracies were incurred by 
initially using the analytical Schwarz-Christoffel integrated dz/dw (where z = x + iy is the 
complex position vector in physical space and w = 4 + i$ is the complex potential) to determine 
the metric scale factor h near panel endpoints. The metric h 4 Idz/dwl is singular at the endpoints 
and this induces abrupt, singular changes in the scale factor computed on the body. The singular 
behaviour is eliminated if numerical differentiation of the integrated z-field is used to calculate h, 
since the novel numerical integration technique devised by Davis26 removes the singularities in 
the final integral. 

In the linear incompressible von Neumann stability analysis of Reference 12 it was shown that 
the largest eigenvalue of the Fourier global amplification matrix is bounded above by 

This equation demonstrates that although the global relaxation is unconditionally stable, i.e. 
I,?,,, I always remains less than one, the maximum eigenvalue does approach one as the ratio 
(A</qm) + 0. This means that the convergence rate declines as we refine the grid in the <-direction 
and becomes very slow for fine grids. Therefore one must use care in selecting the A t i  spacing of 
the finite difference grid in order to balance the need for adequate resolution against the penalty 
in convergence rate. Also, refining A t i  reduces the artificial viscosity inherent in the upwind 
differencing of the convection terms and this decreases the damping in the relaxation process. 
These two effects lead to convergence oscillations for fine meshes and reduce the convergence 
rate. 
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As shown in Reference 18, the positive flux component of the p e  term also dimishes the artificial 
viscosity of the discrete approximation. Experimentally it is found that the inherent damping also 
decreases for increasing Mach number and the resulting oscillations also slow the convergence 
rate. This effect can be mollified with the use of the (T, elliptic damping factor; however, this also 
leads to numerical smearing of the high-gradient regions. 

RESULTS 

Incompressible channel flow 

Incompressible rectangular channel computations were obtained for Reynolds numbers (Rehi2) 
of 10,75, 100 and 1000 based on the half-channel height. As discussed previously, an initial entry 
flow region is defined for [ I 0.2. It is here that a characteristic 'double-peaked' u-velocity profile 
is observed experimentally. This behaviour is captured by Navier-Stokes and asymptotic2' 
solutions for the channel entry flow, but not with simple boundary layer approximations. The 
overshoot behaviour is accurately captured with the RNS model. Figure 2 illustrates the solution 
for Rehi2 = 75. The peaks are in good agreement with the Navier-Stokes solution of McDonald et 
aL2' and the RNS solution of Chilukuri and Pletcher2' obtained with a different numerical 
scheme. Similar agreement is seen for the centreline velocity  distribution^.^' 

The incompressible curved channel tests included three geometries of varying constrictions at a 
Reynolds number Re, = 100 based on maximum channel width, two geometries at Re,, = 1000 

THIS STUDY 

NcDONALD E l  A L .  "-1 CHILUKURJ AND PLETCHER 

X - 0 . 0 0  0 . 2 0  1.00 4 . 0 0  0 . 0 0  -- 
0 . 0  0 . 5  1.0  1.5 2.0 

VELOCITY SCALE 
U PROFILES 

UV.PLOT.BINARY.SCH.REH75.K263.132 
lIPROF.PLOT.SCH.REH7S.K263.132 

Figure 2. u-profiles, straight half-channel, Re,,, = 75, comparison with other RNS and NS solutions 
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and one geometry at  Re, = 3000. The channel walls are selected from two streamlines of the flow 
over a circular cylinder given by the complex potential 

w = 4 + ill/ = z + u2 / z ,  (22) 

where a is the cylinder radius. The channel was defined by selecting two streamlines a unit 
distance apart for x -+ - co .30 The channel minimum thickness at  the crest of the cylinder is H; 
see Figure 3. The lower of the Streamlines is a distance yo above the centre of the cylinder, which is 
located at the origin. 

The Re,, = 100 computations are included for comparison with those given in Reference 21 
where full and ‘parabolized’ Navier-Stokes solutions were obtained with the same Navier-Stokes 
solver. The differences between the full and approximate Navier-Stokes results were shown to be 
negligible for these cases. The channels of Reference 21 were also generated by selecting two 
streamlines a unit distance apart but at some finite location x = - xo. Hence these are very 
slightly different from those considered herein where xo -+ 00. Despite the small difference in 
channel shape, the results are quite similar (see Figure 3 which compares with Case11 of 
Reference 2 1). A small disparity in bubble size can be attributed to the quasi-conservation scheme 
of Reference21. The present RNS scheme conserves mass exactly. As the size of the bubble 
increases, and consequently the entrained mass flux increases, the disparity in bubble size 
decreases. The effect of the mass flux error is reduced since it represents a smaller percentage of 
the entrained mass. It is significant to note that even small changes in entrained mass flux will 
move the reattachment point considerably. For Re, = 100 and u2 = 0.725, Figure 4 illustrates the 
associated velocity profiles in the separation region. Figures 5 and 6 depict results for H = 0.782, 
u2 = 0.210 and Re, = 1OOO. Comparisons are given with the Navier-Stokes solution of 
Reference 30. For Re, = 1000 it was found that a much finer grid was required. For this calcu- 
lation (236 x 101) mesh points were specified in order to achieve adequate resolution. The 
recirculation bubble is quite large and in excellent agreement with the results of Reference 30; 
see Figures 5 and 6. Slight differences are attributed to the coarser mesh used for the NS 
calculations in Reference 30. Convergence of the present procedure to a local error of 

required 300 global iterations. 

Compressible $ow: NACAOO12 aerofoil in wind tunnel 

For the NACAOO 12 aerofoil-in-wind-tunnel configuration three groups of comparasions are 
presented. The first series discusses variation of the reference (inlet) Mach number M ,  from 0.01 to 

2.0.fl 
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Figure 3. Streamline contours, Joukowski channel, a’ = 0.585, H = 0.678, Re, = 100 
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Figure 6. Streamline contours, Joukowski channel, a' = 0.210, H = 0.782, Re, = 1o00. From Reference 25 
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0 5 .  These calculations are for fixed reference Reynolds number Re, = 1000 based on aerofoil 
chord length, and for fixed channel half-height HT = 1.0. The second series considers variation of 
Re,  from 1000 to 15 000 for fixed M, = 0.4 and fixed HT = 1.0. The third series re-examines the 
preceding cases but for HT = 2.0. The number of grid points in the x (IMAX) and y (JMAX) 
directions as well as the total number of iterations (ITER3T) for convergence to lop6 are given in 
Figures 7--15. Figure 7 depicts a typical grid for Re, = 1000, M, = 0.01 and HT = 1.0; every third 
gridline in [ and y is displayed. 

Figure 8 depicts the typical axial variation of the la-component of velocity for a nearly 
incompressible case at M, = 0.01. The closing of the downstream wake occurs at about 18 chord 
lengths downstream of the aerofoil. The behaviour near the leading edge is basically inviscid and 
does not change significantly as Re, is increased. The distance to wake closure, however, increases 
significantly as Re, and M, are in~reased.’~ 

For M, = 0.5 the wake extends the entire downstream length of the grid-some 30 chord 
lengths; see Figure 9. For M, = 0.01 the M-level increases minimally and accelerates towards 
unity, as would be expected from simple frictional flow analysis, near the end of the duct. For 
M, = 0.5 the Mach number acceleration was significant. The Mach number was 0.859 at 
the exit station and the peak Mach number was 0.918 64. This occurred in the aerofoil section 
of the duct. 

Table I tabulates the ratio Ap*/p ,  = y,M? pinlet of actual pressure drop across the length of the 
duct to exit pressure p , ,  as well as the ratio of pressure drop in each channel to the base quasi- 
incompressible flow case at M ,  = 0.01. Also tabulated for each M, is the dimensionless mass flux 
m, centreline exit Mach number Mimaxr average exit pressure gradient pr,,,, and exit friction 
coefficient Cflmax. 
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Figurc 7. Grid for NACAOO12 aerofoil in wind tunnel, HT = 1.0, Re,  = 1000, M ,  = 001, IMAX = 200, JMAX = 71 
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The pressure drop, mass flux and exit Mach number all increase non-linearly with M , ,  as 
expected from simple frictional flow. For the lower-Mach-number cases, pt,,,. and CfimaX are 
close to the theoretical fully developed values pfd,< = - 3/Re and C, = 6/Re. 

Typical streamline contour plots (Figures 10 and 11) illustrate the growth of the aerofoil 
separation bubble with increasing Re,. There is a pronounced drop in induced mass flow rate m 
resulting from the diminished viscous pressure drop at larger Re,; see Table TI. 

From a comparison of streamwise pressure distributions at  Re, = 1000 and 5000 in Figures 12 
and 13, we observe the large drop in peak pressure on the aerofoil from Re, = 1000 to 
Re, = 5000 that we would expect from reduced viscosity and consequent decreased viscous 
pressure drop. From Re, = 5000 to 15000 there is little influence of the Reynolds number 
change. Many additional results are given in Reference 25. 

As presented in Reference 20, the relevant viscous parameter for rectangular channel flow is the 
Reynolds number based on channel half-height Re,,,. For our HT = 1.0 cases Re,,, = Re,. 

Table I .  Comparison of cases for varying M,, fixed Re, = 1000, fixed exit pressure p, and HT = 1.0 

~~ ~ 

001 7.9219 x lo-' 1 .o 1.99848 0.0127 - 0.00439 0.007221 1 
0.10 0.0080938 102.17 2.01453 0.130 - 0'00452 0.0073089 
0.20 0.034669 43764 2.06773 0.260 - 0.00493 0.0076024 
0.30 0.088666 11 19.25 2.17581 0.415 - 0.00585 0.0082126 
0.40 0.19705 2487.39 2.39267 0.585 - 0.00812 0.0095147 
0.50" 0.50087 6322.61 3.00238 0.859 - 0.01916 0.014072 
0.50b 0.48908 6173.72 2.Y7876 0.8527 - 0.01871 0.013893 

a C J ~  = 0.8. oV = 1.0. 
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Figure 10. Streamline contours, NACA0012 aerofoil in wind tunnel, HT = 1.0, Re,. = 5000, M ,  = 0.40 
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Table 11. Comparison of cases for varying Re, fixed M ,  = 04, fixed exit pressure p, and HT = 1.0 
~ 

Re, Re,/, AP*/P~ A~(Re)lA~*(1000) m M i m a ,  CfmaX Cftmax 

lo00 lo00 0.19705 1 .o 2.39267 0.56758 0.37524 04)095147 
5000 5000 0.07239 0.36737 2.14467 0.50394 0.14520 00023641 

10000 10000 0.04930 0.250 17 2.09842 0.47527 0.09 1705 0.0014 122 
15000 15000 0.03963 0.201 12 2.07905 0.46187 0.070012 0.0010623 

Furthermore, from Reference 20 we see that the applicable functional forms of Re,/, for use in 
perturbation series are Re$/’ in the initial portion of the entry flow region and Rehi thereafter. 
These indicate an inverse dependence of flow behaviour on Re,,,. The peak Cf on the a e r ~ f o i l ~ ~  
indicates this inverse trend with Re. The ratios of successive peak Cf values, 
C,(~e,),,,IC,(Re, ),,,, are such that 

The decreasing rate of velocity and Mach number acceleration for increasing Re is seen most 
clearly by comparing the exit Mach numbers Mimax. Comparisons of these and other flow 
quantities with increasing Re are given in Table 11. 

The Re, parameters for the HT = 2.0 cases are identical to their HT = 1.0 counterparts, 
although the channel development parameter Re,,, is now double that of the HT = 1.0 cases. 
Thus we would expect that those quantities that depend primarily on the channel flow devel- 
opment (C, on wind tunnel walls) should scale with Re,/,. This assumption is confirmed by 
comparison of the mass flow rates for Re, = 1OOO. The value of 3 m for the HT = 2.0 case is less 
than m for the corresponding HT = 1.0 case, although the channel height has been doubled. 
These and other flow quantities are tabulated for increasing Re for the HT = 2.0 cases in 
Table 111. 
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A comparison of the corresponding recirculating flow streamlines of these two case setsZ 
reveals that the corresponding bubbles are almost identical. This indicates that the local aerofoil 
flow is relatively insensitive to the wall location even for HT = 1.0. The streamwise pressure 
distributions and pressure drop ratios Ap*/pr (compared in Tables I1 and 111) demonstrate that 
the pressure levels for HT = 1.0 are correspondingly higher than those for HT = 2.0. This is 
consistent with the notion that the channel flow properties, e.g. pressure drop, scale with Re,,, 
rather than Re,. By similar reasoning we can anticipate the larger-Mach-number acceleration of 
the narrower channel as reflected by the larger values of Mimax. 

Figure 14 illustrates the rather unusual mode of convergence exhibited by the compressible 
flow cases. The maximum pressure residual Ap 4 max 1 p t  - p t ;  I travels upstream as a wave of 

i , j  

Table 111. Comparison of cases for varying Re, fixed M ,  = 0.4, fixed exit pressure p ,  and HT = 2.0 

Re, Rehjz AP*lPr A ~ ( R e ) l A ~ * ( 1 0 0 0 )  m M i m a x  Cfmax %“ax 

1000 2000 0.08178 1.0 4.32884 0.51337 0.34608 0,0056345 
5000 10000 0.03380 0.41 334 4-13578 045335 0.1291 1 OGO17501 

10000 20000 0.02354 0.28787 4.09448 043812 0.083833 0.0011156 
15000 30000 0.01909 0.23347 4.07657 0.43135 0.064778 0.00086695 
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almost constant amplitude until it reaches the inlet station. The mass flux adjusts to the pressure 
information and consequently there is a pronounced drop in the Ap error level in the grid. 
Subsequent Ap waves of smaller amplitude travel upstream and the process is repeated. The 
convergence rate systematically decreases for increasing Mr,25 A multigrid method recently 
applied for RNS external flow by Himansu and Rubin3' has accelerated convergence by an order 
of magnitude. This is suggested for internal flows as well. 

The Reynolds number variation for HT = 2.0 exhibits similar but elevated convergence history 
curves. A tendency towards increasing Au residuals was evidenced for the wider channel. By 
Re,  = 15 OOO (Figure 15) the Ap variation had changed to a damped oscillation in phase with Au. 
The spikes observed for the first 80 iterations in Figure 15 are simply a result of the normal 
relaxation initialization process involving stepwise increases in Re,. Engineering accuracy is 
achieved in 2W300 iterations. Once again, multigrid acceleration should reduce this by an order 
of magnitude. 

CONCLUSIONS 

The global pressure flux-split relaxation procedure developed by Rubin and co-workers for the 
solution of the RNS equations in external flow has been extended here to the internal flow 
problem. 

The internal flow application introduces the consideration of mass flux conservation and 
evaluation. The mass conservation constraint introduces a greater degree of stiffness in the RNS 
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system. This gives rise to non-physical oscillations which are suppressed by modifying the 
pressure relaxation in the normal momentum equation. The iterative variation of the inlet mass 
flux leads to a step-like convergence rate reflecting the interaction of pressure waves with the inlet 
boundary condition. Although these features complicate the application of the method to internal 
flow, it is nervertheless stable and capable of calculating flows with strong viscous-inviscid 
interaction and large recirculation regions for large Reynolds number. 

The present study was directed towards the stable adaptation of the RNS solution procedure to 
internal flow and the evaluation of flows with large recirculation and blunt leading edge 
geometries. These aims have been accomplished. Future work will examine convergence 
enhancement and the effectiveness of the multigrid method. 
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